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ABSTRACT
The rapid growth of medical imaging data brings heavy pressure to radiologists for imaging diagnosis and report writing. This
paper aims to extract valuable information automatically from medical images to assist doctors in chest X-ray image interpreta-
tion. Considering the different linguistic and visual characteristics in reports of different crowds, we proposed a template-based
multi-attention report generation model (TMRGM) for the healthy individuals and abnormal ones respectively. In this study, we
developed an experimental dataset based on the IU X-ray collection to validate the effectiveness of TMRGM model. Specifically,
our method achieves the BLEU-1 of 0.419, the METEOR of 0.183, the ROUGE score of 0.280, and the CIDEr of 0.359, which
are comparable with the SOTA models. The experimental results indicate that the proposed TMRGM model is able to simulate
the reporting process, and there is still much room for improvement in clinical application.
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1. INTRODUCTION

Medical imaging data is the key basis for early screening, diagno-
sis, and treatment of diseases. In a real clinical scenario, profes-
sional radiologists review and analyze medical images empirically,
then describe imaging findings and write the diagnosis conclusions
in semi-structured reports. However, the rapid growth of medi-
cal imaging data brings heavy workload to radiologists for image
reading and report writing. How to assist doctors in medical image
interpretation has become an important and challenging task for
computers.

In the last decade, the interdisciplinary research and application of
medical imaging and advanced intelligence technology are growing
rapidly [1]. Driven by large-scale open access image dataset, deep
learning, represented by convolutional neural network (CNN) [2]
and recurrent neural network (RNN) [3], push forward the devel-
opment of computer-aided diagnosis (CAD) systems [4], which can
effectively process large-scale multimodal medical images, detect
abnormal lesions, and distinguish the nature of the lesion [5–9]. In
the computer vision area, deep natural language processing (NLP)
technology can be used to describe images by combining the image
features with the text features. Inspired by this, more complex cog-
nitive tasks such as visual captioning and medical image report gen-
eration have attracted growing attention in recent years [28–30].
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However, despite the state-of-the-art progress, it is still challeng-
ing to generate clinically readable and interpretable reports. For
example, existing methods perform better on generating short
descriptions of images, but incapable of diversifying language and
depicting long complex structures [10,11]. Linguistically, most
studies treat visual words and nonvisual words equally (such as
“there,” “evidence,” “seen,” “to,” etc.), while the latter have no corre-
lation with any image features and may be misleading for text gen-
eration. Additionally, in the real clinical setting, radiologists often
write normal reports based on unified templates, and reports of
healthy individuals only describe normal organ or structures. How-
ever, most studies treat the reports of healthy individuals and abnor-
mal ones with similar methods. There is little difference between the
generated reports of healthy individuals and sick ones, especially
underperform on depicting rare abnormal findings.

In addressing this problem, we proposed a novel framework for
chest X-ray image interpretation and report generation by exploit-
ing the different structure of healthy/abnormal reports. The major
contributions of this paper are summarized as follows. (1) We
proposed template-based multi-attention report generation model
(TMRGM), a new template-based multi-attention mechanism for
chest X-ray report generation, which utilize different strategies to
generate imaging reports for healthy individuals and abnormal ones
respectively. (2) To generate chest X-ray imaging reports for healthy
individuals, we manually constructed a library of chest X-ray report
templates. (3) To generate chest X-ray imaging reports for abnor-
mal individuals, we integrate image features and text features via
co-attention mechanism and adaptive attention mechanism. The
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model can automatically choose whether to generate report text
based on image features, sentence topics, or text features. (4) We
verified the performance of chest lesion recognition and report gen-
eration based on the public available IU X-ray dataset (Open I) [18].

2. RELATED WORKS

2.1. Medical Imaging Datasets

In recent years, deep neural networks have shown great potential
in challenging tasks of medical image processing [12,13]. The rapid
improvement partly depends on the publicly accessible medical
imaging datasets that covering multimodal and various body parts
with quality annotation. In particular, images concerning chest dis-
eases, e.g., chest X-rays and chest CT scan are commonly used for
clinical screening and diagnosis, and account for a large proportion
in public datasets.

For instance, the NIH released the ChestX-ray14 dataset for tho-
racic lesion detection [14]. The National Cancer Institute (NCI)
released the LIDC–IDRI dataset for early cancer detection in high-
risk populations [15] and Data Science Bowl 2017 [16], the high-
resolution CT scan data for lung cancer prediction. The Stanford
University present CheXpert [17], a large-scale dataset that con-
tains 224,316 chest radiographs of 65,240 patients. OpenI [18] con-
tains chest X-ray reports of 3,955 patients and 7470 chest X-ray
images, which has become the benchmark of the current research
on imaging report generation. Recently, MIT released MIMIC-
CXR-JPG v2.0.0 [19], a large dataset of 377,110 chest X-rays asso-
ciated with 227,827 imaging studies sourced from the Beth Israel
Deaconess Medical Center. In addition, during the outbreak time
of COVID-19, many small-scale datasets are released for develop-
ing AI-based diagnosis models of COVID-19. For instance, Yang et
al. build an open-sourced dataset COVID-CT [41], which contains
349 COVID-19 CT images from 216 patients and 463 non-COVID-
19 CT. Li et al. introduced COV-CTR [42], a COVID-19 CT report
dataset which contains 728 images collected from published papers
and their corresponding paired Chinese reports.

2.2. Thoracic Lesion Recognition

In the early stage of image recognition, some feature extraction
methods, such as histogram of oriented gradients (HOG) and scale
invariant feature transform (SIFT) were mainly used to classify
and recognize the extracted features through classifiers [43]. Early
image recognition tasks are targeted at specific recognition objects,
without generalization ability, and the sample size is small, so
it is difficult to meet high recognition requirements in practical
application.

Thoracic Lesion Recognition (TLR) has long been a research focus
in CAD. According to the types of identified lesions, TLR meth-
ods can be divided into two categories. One is single thoracic
lesion recognition (sTLR), which focuses on the imaging charac-
teristics of a particular type of lesion. It can assist the early screen-
ing and diagnosis of a specific disease, e.g., the pulmonary nodule
detection [20,21]. The other one is multiple thoracic lesion recog-
nition (mTLR), which target multiple types of disease or lesion,
such as pulmonary nodules, pneumonia, pneumothorax, pleural
effusion, atelectasis, pulmonary abscess, pulmonary tuberculosis,

etc. The mTLR is more consistent with the radiologists’ way of read-
ing images, and can better support comprehensive diagnosis.

There are commonly two steps in mTLR: (1) multi-label classifica-
tion (MLC) of thoracic lesions revealed in chest radiography; (2)
thoracic lesion localization, which identifies specific regions and
profile of abnormal lesions in chest radiography. In recent years,
deep learning models start to outperform conventional statistical
learning approaches [43,44] in the TLR task. A representative work
is the CheXNet developed by Ng et al. [22], a 121-layer dense con-
volutional neural network (dense CNN), which detect 14 chest
diseases simultaneously based on the ChestX-Ray14 data set. Bar
et al. [23] used the pretrained CNN model to extract the high-
dimensional features of medical images, and combined them with
general GIST feature and bag-of-visual words (BoVW) features
as the input of support vector machine (SVM) to detect thoracic
lesions. Wang et al. [14] developed a Ddep convolutional neural net-
work (DCNN) for mTLR. Yao et al. [24] constructed a DenseNet-
long short-term memory (DENsenet-LSTM) model to identify the
14 thoracic lesions by utilizing latent correlation between different
lesions in chest X-ray images.

2.3. Visual Captioning and Medical Image
Report Generation

Visual captioning aims at generating a descriptive sentence for
a given image or video. Most state-of-the-art methods generated
sequences based on the CNN-RNN architectures and attention
mechanisms [45–47]. In addition to the one-sequence generation
in early studies, some efforts have been made for generating longer
paragraphs [11], which inspires the research of medical image
report generation. However, medical image reports are more pro-
fessional and informative than natural image captions, which poses
greater challenge on generating clinically readable reports. Shin
et al. first proposed a variant of CNN-RNN framework to predict
lesion tags of chest X-ray images [25]. Wang et al. [26] developed
Latent Dirichlet Allocation-based topic models for imaging report
generation. Kisilev et al. [27] proposed a CNN-based method for
generating reports of classified mammography images. Wang et al.
proposed the TieNet model [28], integrating the multi-attention
model into the end-to-end CNN-RNN framework for performing
disease classification and generating simple imaging reports. Jing
et al. [29] constructed a hierarchical language model equipped with
co-attention to better model the paragraphs, but it tend to pro-
duce normal findings. They went further to explore the complex
structures of reports, and proposed a two-stage strategy that mod-
els the relationship between Findings and impression [48]. Li et al.
[30] proposed KERP, a knowledge-driven imaging report genera-
tion model, which constructed a graph transformer (GTR) for the
dynamic transformation of text features and image features.

The difference between our proposed model and existing meth-
ods lies in that we classified chest X-rays into healthy or abnormal
individuals based on MLC module, then we combined report tem-
plates with multi-attention-based hierarchical LSTM model and
generate reports respectively according to the nature of the given
image (healthy/abnormal). In addressing the problem that the non-
visual feature words are difficult to align with the image features,
TMRGM- generated visual words and nonvisual words separately
based on features from different modality.
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Figure 1 Over view of the framework of the proposed template-based multi-attention report generation model
(TMRGM).

3. METHOD

As shown in Figure 1, the proposed framework is comprised of
three modules: (1) the chest X-ray classification (healthy/abnor-
mal) module based on multi-label thoracic lesion recognition; (2)
template-based report generation module for healthy individu-
als; and (3) multi-attention-based Hierarchical LSTM module for
abnormal individuals [32–34].

3.1. CNN-Based Thoracic Lesion
Recognition

We define the identification of thoracic lesions as a MLC prob-
lem. Given a chest X-ray image, we first extracted the image fea-
ture V automatically using the ResNet152 model. Then we predict
the probability distribution of 587 semantic labels collected from
the IU X-ray dataset [18] via a MLC module P ∝ exp (MLC (V)),
which consists of a full connection layer and a softmax layer. Finally,
we selected the top 10 semantic labels (abnormal lesion or normal)
with the highest probability as the output of thoracic lesion recog-
nition model.

3.2. Chest X-Ray Image Classification

Considering the difference between descriptions from normal/ab-
normal reports, the TMRGM model first determines whether the
given medical image belongs to healthy individuals or abnormal
ones, and then utilizes different methods to generate reports for
these two types of images. According to the distribution of semantic
labels predicted by the thoracic lesion recognition model, we clas-
sify chest X-ray images based on the MLC module. We defined the
image category as C, and the semantic label with the highest prob-
ability was Lmax, the image classification criteria was as follows:

C =

{
1, Lmax = normal
0, Lmax = other label

(1)

In the formula (1), number 1 represents images from healthy
individuals and number 0 represents images from abnormal
individuals.

3.3. Template-Based Report Generation for
Healthy Individuals

For healthy individuals, radiologists confirm no abnormalities and
depict the normal organ or tissue with similar descriptions. In
view of this, we constructed a library of chest X-ray report tem-
plate for generating normal reports of healthy individuals. We first
selected all the imaging reports of healthy ones from the IU X-
ray dataset, and then we respectively collected sentences from two
text field, “Findings” and “Impression.” Since many sentences in
imaging reports express similar medical meaning (e.g., “pulmonary
vascularity is within normal limits” and “pulmonary vascularity is
normal”), we sorted these sentences according to their frequency
in corresponding field and manually classified and labeled them.
Specifically, first, we combined identical sentences (maybe some
words have different singular or plural forms or tenses) into a single
sentence. Second, we categorized sentences that have similar med-
ical meaning. Third, we annotated the key words in each sentence
for further analysis. Forth, we ranked the categories according to
the sum of sentence frequency in each category, and selected one
representative sentence from each category to construct a normal
template library. Fifth, on average, the “Findings” field contains
3.4 sentences and the “Impression” field contains 1.5 sentences,
we chose the top4 categories from “Findings” and the top2 cate-
gories from “Impression.” Finally, we use the representative sen-
tences from the chosen 6 categories as the template sentences for
generating normal imaging reports of healthy individuals.

3.4. Multi-Attention-Based Report
Generation for Abnormal Individuals

3.4.1. Co-attention-based multimodal feature fusion

To better interpret abnormal findings, it is necessary to combine
the local image features with high-level thoracic lesion labels. We
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employed the co-attention mechanism to fuse the image features
extracted by ResNet152 and the text features of the thoracic lesion
labels predicted by the MLC module. The feature fusion model
assigned corresponding weights to different image regions while
generating sentences, so that it can focus on the related image region
and the thoracic lesion labels.

In particular, we first define a sentence LSTM model. At time t, let
the image feature as V, the embedding vector of 10 predicted tho-
racic lesion labels is L, the attention weight vector of the image fea-
ture 𝜶V, the attention weight vector of the label text feature is 𝜶L,
and then we fuse the image features and the label text feature by
computing the context feature vector CVL as follows:

C(t)
VL = WFC

[
V(t)
att; L

(t)
att

]
(2)

V(t)
att = aV ⋅ V (3)

L(t)att = 𝜶L ⋅ L (4)

𝜶V = softmax
(
fatt

(
V, ht−1

))
(5)

𝜶L = softmax
(
fatt

(
L, ht−1

))
(6)

In formula (2), WFC is a fully connected network layer, V(t)
att and

L(t)att are the image feature and the text feature weighted by the co-
attention mechanism at the time t in formula (3) and (4). The ht−1
represents the hidden state of the sentence LSTM at the time t − 1,
fatt is the function of the attention mechanism, as shown in formula
(5) and (6), in which Wvat, Wv, Wvh, Wlat, Wl and Wlh are parame-
ter metrics. Based on the context feature vector CVL, we can predict
topics of each generated sentence.

fatt
(
V, ht−1

)
= Wvattanh

(
WvV +Wvhht−1

)
(7)

fatt
(
L, ht−1

)
= Wlattanh

(
WlL +Wlhht−1

)
(8)

3.4.2. Sentence topic generation based on
sentence LSTM

The sentence LSTM contains three parts: (1) a single-layer LSTM
network, which generates the LSTM hidden state ht on time t based
on CVL; (2) a topic generation network, which is a single-layer fully
connected network for predicting the sentence topic vector topic(t)
on time t based onC(t)

VL and ht; (3) a stop-control network that deter-
mines when to stop generating report text. It consists of a fully con-
nected layer and a softmax function, and take the LSTM hidden
state ht and ht−1 as input to generate the stop vector stop(t) on time t.
The formula for calculating ht, topic(t), and stop(t) are as follows, in
which Wt, Wth, Wtc, Ws, Wsh1 and Wsh2 are parameter metrics.

ht = LSTM
(
C(t)
VL

)
(9)

topic(t) = Wttanh
(
Wthht +WtcC

(t)
VL

)
(10)

stop(t) = softmax
(
Wstanh

(
Wsh1ht−1 +Wsh2ht

))
(11)

3.4.3. Adaptive attention-based word LSTM for
sentence generation

There are many nonvisual words in the report context, such as
“evidence,” “of,” “acute,” and “remain,” which cannot be aligned
directly to a specific image region. Otherwise, in the training pro-
cess, the gradient of nonvisual words will influence the alignment
accuracy between visual words and image features. Therefore, we
used the adaptive attention-based word LSTM model to generate
sentences. During the process of word generation, the adaptive
attention mechanism decides whether to use the image feature, the
sentence topic, or rather the context feature to generate the current
word. Figure 2 shows the structure of the word LSTM model based
on the adaptive attention mechanism.

The adaptive attention mechanism [34] is an extension of the soft
attention model proposed by Xu et al. [35]. As shown in the for-
mula (13) and (14), at timestamp t, the adaptive attention mecha-
nism assigns weights 𝜶t to image local features based on the hidden
state ht, thus reduce the uncertainty of generating new words.

zt = 𝜔T
h tanh

(
WvV +Wght

)
(12)

𝜶t = softmax
(
zt
)

(13)

Cvt = 𝜶t ⋅ V (14)

The adaptive attention also improves the LSTM by introducing a
new sentinel gate gt and a visual sentinel vector St as follows:

gt = σ
(
Wxxt +Wtotopic(t) +Whht−1

)
(15)

St = gt ⋅ tanh
(
mt

)
(16)

where mt is the memory cell of LSTM, Wx, Wto and Wh are the
parameter matrix, σ is a sigmoid function, topic(t) is the topic vector
generated by the sentence LSTM. The sentinel gate gt determines
whether the model focuses on the image featureV or the visual sen-
tinel vector St. Furthermore, based on the St, the adaptive attention
improves the context feature vector Ct as follows:

Ct = 𝛽tSt +
(

1 − 𝛽t
)
Cvt (17)

To compute 𝛽t ∈ [0, 1], we modified the attention weight 𝜶t into
𝜶′

t . Then the probability distribution pt of current word can be cal-
culated as the formula (20).

𝜶′
t = softmax

([
zt;𝜔T

h tanh
(
WsSt +Wght

)])
(18)
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Figure 2 The structure of the word LSTM model based on the adaptive attention mechanism.

𝛽t = 𝜶′
t [n + 1] (19)

pt = softmax
(
Wp

(
Ct + ht

))
(20)

4. EXPERIMENTS

4.1. Preprocessing of Chest X-Ray Dataset

Indiana University chest X-ray collection [18] is a public dataset
containing 7470 chest X-ray images and 3955 de-identified radi-
ology reports, and is commonly used for assessing imaging report
generation models. Each report is comprised of several sections:
Impression, Findings, and Indication, etc. We select Findings and
Impression from the reports as our experimental data. The seman-
tic labels annotated by MTI tools [36] are also collected for thoracic
lesion recognition.

During the preprocessing stage, we resized all chest X-ray images
into 224*224 pixels as the unified input of CNN model. The image
quality is quite acceptable and we did not use additional data
augmentation technologies. For collected MTI labels, we removed
duplicates, lowercased all words, and obtained a set of 587 seman-
tic labels. For texts extracted from Findings and Impression, we
performed sentence segmentation, lowercased, delimitated punc-
tuations, special characters, and extra spaces, and then converted
numbers into a unified identifier “num.” Further, we constructed
a dictionary base on the word frequency higher than 5 in imaging
reports, in which 1173 words were included.

Figure 3 shows a processed chest X-ray report sample, including
a chest X-ray image, corresponding semantic labels and textual
descriptions.

We filtered out 298 reports without MTI labels, and collected the
rest of 3657 reports together with 6909 X-ray images as our exper-
imental dataset. We divided the whole dataset into three parts, i.e.,

a validation set containing 500 randomly selected X-ray images, a
test set containing another 500 images, and a training set contain-
ing the rest of 5909 images.

4.2. Experimental Settings

4.2.1. Implementation details

We carried out experiments on Windows Sever 2012 R2, Intel(R)
Xeon(R) Gold 6130 64 CPU, 512GB memory, NVIDIA Tesla P100
16GB * 4 GPUs. The codes of TMRGM are implemented under the
PyTorch framework and are available at https://github.com/54649
2928/TMRGM.

During the training process, the dimensions of hidden states in
sentence LSTM and word LSTM are set to 512. The dimension
of thoracic lesion word embedding, sentence topic embedding
and report word embedding are also set as 512. We adopt a pre-
trained ResNet152 as image encoder, which is fine-tuned on the
training set for obtaining chest X-ray image features. For the tho-
racic lesion MLC module, the visual features are 2048 dimensions
extracted from the last average polling layer of ResNet152. For the
multi-attention-based report generation module, visual features are
extracted from the last convolutional layer, which yields a 7*7*2048
feature map. We use Adam optimizer with the initial learning rate
of 0.0003 (dynamically reduced by 10% while the training error stop
descending in 10 epochs), and the batch size is set as 16.

4.2.2. Evaluation metrics

We evaluated each submodule of our proposed method on differ-
ent evaluation metrics. For evaluating the performance of MLC
of thoracic lesions, we calculate precision (P), recall (R), F1 score,
Recall@5, Recall@10, and Recall@20. Specifically, recall@N com-
pares the number of correct labels in the top N predictions with
the total number of labels in ground truth. For the chest X-ray

https://github.com/546492928/TMRGM.
https://github.com/546492928/TMRGM.
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Figure 3 A sample of processed chest X-ray report sample.

Table 1 Results of multi-label classification model based on different CNN models.

Methods P R F1 Score Recall@5 Recall@10 Recall@20
ResNet152 0.112 0.698 0.181 0.605 0.698 0.767
VGG19 0.091 0.618 0.150 0.560 0.618 0.635
Densenet121 0.112 0.682 0.180 0.595 0.682 0.756
SENet154 0.112 0.701 0.180 0.602 0.701 0.775
ResNet152 (top2) 0.311 0.488 0.355 __ __ __

image classification module, we calculate accuracy, specificity,
and sensitivity. As to the imaging report generation module, we
obtained BLEU [49], METEOR [50], ROUGE [51], and CIDEr
[52] by the standard image captioning evaluation tool [53], which
are commonly used in the field of machine translation and image
captioning.

4.2.3. Comparison methods

For thoracic lesion recognition and chest X-ray classification, we
compare the influence of different image encoders on the classi-
fication models. As a comparison experiment, we simultaneously
built multiple CNN models such as VGG19 [37], Densenet121 [38],
SENet154 [39], and ResNet152 [31] to extract visual features, as
shown in Tables 1 and 3.

For chest X-ray report generation, we compare our proposed
method with state-of-the-art method: TieNet [28], CoAtt [29], and
Adapt-Att [34]. We also report TMRGM without introducing tem-
plate. Further, we perform a qualitative assessment of the generated
radiology reports manually.

4.3. Results

4.3.1. Results of thoracic lesion recognition

Table 1 shows the experimental results of thoracic lesion recog-
nition based on different MLC models. It can be seen that the
ResNet152-based MLC module achieved the precision of 0.112, the
recall@5 of 0.605, the recall@10 of 0.698, and the F1 Score of 0.181,
which outperform other methods. However, the best precision was

only 0.112. For one thing, the 587 semantic labels increased the dif-
ficulty of building high-precision classifiers, while the training set
only contains 5909 chest X-ray images. For another thing, the distri-
bution of the semantic labels showed that each image in the training
set contains two labels on average, which implies the confliction of
our strategy on label selection (top 10). We tried to select the top2
labels predicted by ResNet152 as a comparison, and achieved a pre-
cision of 0.311, a recall of 0.488, and a F1 score of 0.355.

Table 2 shows two examples of ResNet152-based MLC module for
thoracic lesion recognition. For the first image, the model correctly
identified three semantic labels, namely atelectases, atelectasis, and
opacity. According to these three lesions, patients can go to the res-
piratory department for medical treatment. As to the other one, we
recognized a lesion “cardiomegaly,” which reminds the patient to
see the cardiologist.

4.3.2. Results of chest X-ray image classification

According to whether the “Normal” label achieves the high-
est probability in predicted labels, we classified chest X-ray
images into healthy individuals and abnormal ones. We com-
pare the ResNet152-based classification module with other CNN-
based binary classification models, such as VGG19, Densenet121,
SENet154, and Inception-V3 [40]. Table 3 shows the experimen-
tal results of chest X-ray image classification. The ResNet152-
based classification model achieved the best accuracy of 0.73, the
DenseNet121 achieved the best specificity of 0.803, and the SENet
achieved the best sensitivity of 0.758. The ResNet152 achieved
the best 95% confidence interval of the accuracy ([0.691, 0.769]),
followed by the Densenet121 ([0.674, 0.754]) and the SENet154
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Table 2 Examples of ResNet152-based MLC module for thoracic lesion recognition.

Chest X-ray Image Predicted Labels MTI Labels
atelectases;
atelectasis;
opacity;
cardiomegaly;
scarring;
degenerative change;
calcified granuloma;
normal;
pleural effusion;
granuloma

atelectases;
opacity;
atelectasis;
hiatal hernia;
infection

cardiomegaly;
degenerative change;
opacity;
atelectases;
atelectasis;
scarring;
normal;
calcified granuloma;
granuloma;
pleural effusion

cardiomegaly

Table 3 Results of chest X-ray classification.

Method Accuracy Confidence
Interval (95%)

TP TN FP FN Specificity Sensitivity

ResNet152 0.73 [0.691, 0.769] 137 228 61 74 0.789 0.649
VGG19 0.578 [0.535, 0.621] 289 0 211 0 0 1
Densenet121 0.714 [0.674, 0.754] 125 232 57 86 0.803 0.592
SENet154 0.712 [0.672, 0.752] 160 196 93 51 0.678 0.758
Inception-V3 0.708 [0.668, 0.748] 128 226 63 83 0.782 0.607

([0.672, 0.752]). In the ResNet152-based classification model, error
case study reveals that a part of normal cases were misclassified as
abnormal ones. A statistical analysis reveals that the ratio of images
from healthy and abnormal individuals in the training set was about
2:3, which indicates that the performance of chest X-ray image clas-
sification is to some extent affected by the data imbalance.

4.3.3. Templates for chest X-ray report generation

For generating the reports of healthy individuals, we manually con-
structed templates based on the Findings and Impression text respec-
tively. Specifically, the Impression section contains 63 subclasses of
the report sentence (partly shown in Table 4), and the “Findings”
field contains 150 subclasses (partly shown in Table 5). According to
the sum of the sentence frequency in each subclass, we selected the
top2 high frequency subclass for the Impression and the top4 sub-
class for the Findings. Then the combination of the representative
sentences from the selected six subclasses forms a complete Chest
X-ray report template (see Table 6).

4.3.4. Results of chest X-ray report generation

Table 7 shows results of Chest X-ray report generation on the
automatic metrics. The evaluation metrics, such as BLEU score,
METEOR, ROUGE, and CIDEr, are based on n-gram similarity
between the generated sentences and the ground-truth sentences.

The difference between these metrics lies in the various strategies of
n-gram similarity calculation and weight assignment. We compared
our proposed TMRGM model with three state-of-the-art methods
based on the test set, as shown in Table 7, which demonstrate the
comparable performance of TMRGEM to the SOTA. The Adapt-
att represents the hierarchical LSTM model based solely on multi-
attention mechanism, which achieved the best ROUGE of 0.316
and the CIDEr of 0.387, suggesting that the hierarchical model is
better for modeling paragraphs. Our TMRGM model obtained the
preferable BLEU scores and the METEOR of 0.183, which indi-
cates the high semantic similarity between generated report sen-
tences and the ground-truth sentences. By comparing the results of
TMRGM model and TMRGM without templates, we can see that
the introduction of chest X-ray report template can improve the
BLEU scores and METEOR, suggesting that that the template-based
report generation is linguistically in line with the reports of healthy
individuals.

4.3.5. Qualitative analysis

In this section, we perform the qualitative analysis on the generated
reports. Table 8 presents two abnormal cases of chest X-ray reports
generated by the TMRGM model and Table 9 shows an example of
template-based reports generated for healthy ones.

As shown in Table 8, for the upper case, two sentences of nor-
mal descriptions are semantically similar with the ground-truth



28 X. Wang et al. / Journal of Artificial Intelligence for Medical Sciences 2(1-2) 21–32

Table 4 Some part of manually annotated sentences in the Impression section.

Class Representative Sentence Frequency KeyWords
1 No acute cardiopulmonary abnormality 817 Cardiopulmonary abnormality
2 No active disease 384 Abnormality
3 Heart size is normal and lungs are clear 76 Heart size; lung
4 The heart size and cardio mediastinal silhou-

ette are within normal limits
67 Heart size; cardio mediastinal silhou-

ette
5 No acute pulmonary disease 55 Pulmonary disease

Table 5 Some part of manually anotated sentences in the Findings section.

Class Representative Sentence Frequency KeyWords
1 No focal consolidation pleural effusion or

pneumothorax
579 Pleural effusion; pneumothorax

2 The lungs are clear 550 Lung
3 The cardiomediastinal silhouette is within

normal limits
320 Cardiomediastinal silhouette

4 The heart is normal in size 315 Heart size
5 Visualized osseous structures of the thorax

are without acute abnormality
163 Thorax; osseous structure

Table 6 The complete template of chest X-ray reports of
healthy individuals.
Section Template
Impression No acute cardiopulmonary abnormality

No active disease
Findings No focal consolidation pleural effusion

or pneumothorax
The lungs are clear
The cardiomediastinal silhouette is
within normal limits
The heart is normal in size.

sentence, such as “pulmonary vascularity appear within normal
limits.” versus “pulmonary vasculature within normal limits”; and
“no pleural effusion or pneumothorax is seen.” versus “no pleu-
ral effusion. no pneumothorax.” As to the second case in Table 8,
the TMRGM model performs acceptable on generating abnormal
descriptions of chest X-rays, e.g., the predicted sentence “stable car-
diomegaly with prominent perihilar opacities which may represent
scarring or edema,” is semantically similar with the real sentence
“findings concerning for interstitial edema or infection. heart size
is mildly enlarged. there are diffusely increased interstitial opacities
bilaterally.”

Table 9 described the chest X-ray of a healthy individual from
several aspects, such as the cardiopulmonary function (“no acute
cardiopulmonary abnormality”), the pleural lesions (“no pneu-
mothorax or pleural effusion”), the costal mediastinum outline
(“the cardiomediastinal silhouette is within normal limits”), the
cardiac shape and size (“the heart is normal in size”). It can be
observed that the descriptions of multiple anatomic structures are
grammatically and logically in accord with the ground-truth sen-
tences, which demonstrate the chest X-ray report template is highly
similar with the real normal reports in the OpenI IU X-ray dataset.
As shown in Table 10, the visualization heat map reveals the atten-
tive image region while generating a specific sentence. The high-
lights in the heat map represent the image features used to generate

the corresponding sentence, and the darker the color, the greater
the weight. However, it is hard to explain the correlation between
generated sentences and image features.

5. DISCUSSION

Automatic chest X-ray report generation will facilitate radiolo-
gists to improve the efficiency of diagnosis and report writing. The
proposed TMRGM model achieved comparable performance with
SOTA models on chest X-ray report generation. However, it is still
far from clinical usage in realistic scenarios.

First, in the training phase, we collected semantic labels and built
report templates entirely based on the training reports from the
IU X-ray. Then we test our proposed model based on another 500
samples. We found that in generated reports of abnormal individ-
uals, most sentences are normal descriptions, while the propor-
tion of abnormal descriptions is relatively small. This problem may
due to the imbalance of normal and abnormal descriptions in the
training set (in the IU X-ray dataset, each report contains 3.7 nor-
mal sentences and 2.6 abnormal sentences on average). Empiri-
cally, the data scale, completeness, normalization, and quality of
imaging reports are important factors for training. One further
improvement is introducing high-quality parallel datasets, such as
the recently released MIMIC-CXR dataset, so as to train the model
better. It is also necessary for us to validate the generalization per-
formance on external data source.

Second, unlike common natural images, the difference of visual
features in medical images is not obvious, and the ambiguous sit-
uations are quite often, such as the same disease with diverse
visual features, or the similar image features attributed to differ-
ent diseases. The TMRGM model extracted image features based
on the ResNet152, and involved the co-attention as well as the
adaptive attention mechanism. The introduction of the adaptive
attention mechanism chooses reasonable features for generating
different kinds of words, which to some extent, alleviates the prob-
lem of unaligned non-visual words and image features. However,



X. Wang et al. / Journal of Artificial Intelligence for Medical Sciences 2(1-2) 21–32 29

Table 7 Result of chest X-ray report generation.

Method BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE CIDEr
TieNet [28] 0.286 0.160 0.104 0.074 0.108 0.226 –
CoAtt (Jing et al., 2018) 0.303 0.181 0.121 0.084 0.132 0.249 0.175
Adapt-att 0.378 0.255 0.185 0.138 0.162 0.316 0.387
TMRGM(without template) 0.380 0.259 0.188 0.141 0.163 0.317 0.391
TMRGM 0.419 0.281 0.201 0.145 0.183 0.280 0.359

Table 8 Examples of generated chest X-ray reports for abnormal individuals.

Chest X-ray Generated Report Ground Truth
No acute cardiopulmonary abnormality.
The heart size and pulmonary vascularity appear
within normal limits.
The lungs are free of focal airspace disease.
No pleural effusion or pneumothorax is seen.

Right middle lobe airspace disease may reflect
atelectasis or pneumonia.
The cardiomediastinal silhouette is normal size
and configuration.
Pulmonary vasculature within normal limits.
There is right middle lobe airspace disease
may reflect atelectasis or pneumonia.
No pleural effusion. no pneumothorax

       

Stable cardiomegaly with prominent perihilar
opacities which may represent scarring or edema.
There is stable cardiomegaly.
there is no pneumothorax.

       

Findings concerning for interstitial edema or
infection.
Heart size is mildly enlarged.
There are diffusely increased interstitial opaci-
ties bilaterally.
No focal consolidation pneumothorax or pleu-
ral effusion.
No acute bony abnormality.

Table 9 An example of generated chest X-ray reports for healthy individuals.

Chest X-ray Generated Report Ground Truth

       

No acute cardiopulmonary
abnormality.
No active disease.
No pneumothorax or pleural effusion.
The lungs are clear.
The cardiomediastinal silhouette is
within normal limits.
The heart is normal in size.        

No acute cardiopulmonary findings.
No focal consolidation.
No visualized pneumothorax.
No pleural effusions.
Heart size normal.
The cardiomediastinal silhouette is
unremarkable

by reviewing the visualization heat maps of TMRGM, we found
it is hard to explain the correlation between generated sentences
and image features. One optimizing strategy is to segment chest
X-ray images by referring to the description sequence and body
parts specified in reports, and then extract local image features
respectively. Since each body parts has specific semantic labels, the
problem of image feature extraction and classification would be
more simplified. Another direction for improvement is to explore
emerging explainable deep learning networks, combining with
state-of-the-art data augmentation for better understanding and
interpreting radiology images.

Third, we selected the top 10 semantic labels from the MLC module
as the thoracic lesions. Based on this rule, we achieved high recall
but poor precision on thoracic lesion recognition. It is necessary to
explore more reasonable label selection strategies. In addition, in
view of the increasing open access Covid-19 dataset, our method
can be further optimized for assisting the current Covid-19 diagno-
sis, such as identifying thoracic lesions and automatically writing
radiology reports, and reduce the workload of doctors.

Fourth, the dictionary used by the TMRGM model to generate the
medical imaging report contains anatomical locations like right,

left, upper, and lower. However, due to the uneven distribution
of words in the training set and the low frequency of anatomical
locations, most of the generated reports do not contain accurate
anatomical locations. This is also a limitation of this study. In fur-
ther research, we will focus more on the location of the disease in
the medical imaging pictures and how to accurately generate the
description of the anatomical locations.

6. CONCLUSION

In this paper, based on a systematic review of thoracic lesion
recognition and medical imaging report generation, we proposed
a template-based multi-attention model (TMRGM) for automat-
ically generating reports of chest X-rays. By exploring the lin-
guistic characteristics of report texts, we implemented different
report generation methods for healthy individuals and abnormal
ones respectively, and validate the effectiveness of TMRGM based
on the IU X-ray dataset. It is helpful for radiologists to quickly iden-
tify the thoracic lesions and write high-quality chest X-ray reports.
That facilitates the daily work of medical imaging examination and
reduce their burden of image reading and report writing.
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Table 10 A visualization example of generated sentences and corresponding heat map.

Generated report No acute cardiopul-
monary findings

No acute cardiopul-
monary findings

The lungs and pleural
spaces show no acute-
abnormality

The cardiomediasti-
nal silhouette and
pulmonary vascu-
lature are within
normal limits
in size

no typical findings of
pulmonary edema

no typical findings of
pulmonary edema

Ground truth Negative for acute abnormality.
The cardiomediastinal silhouette is nor-
mal in size and contour.
no focal consolidation pneumothorax or
large pleural effusion.
normal xxxx.
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